
PROTECTION OF XML DENIAL-OF-SERVICE AND

FLOODING ATTACKS IN SOAP-BASED WEB

SERVICES USING MIDDLEWARE TOOL

UNIVERSITI KEBANGSAAN MALAYSIA

ABBAS AHMED ALI QASSEM AL-ASRI

PROTECTION OF XML DENIAL-OF-SERVICE AND FLOODING ATTACKS IN

SOAP-BASED WEB SERVICES USING MIDDLEWARE TOOL

2018

ABBAS AHMED ALI QASSEM AL-ASRI

DISSERTATION SUBMITTED IN PARTIAL FULFILMENTS OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE

FACULTY OF INFORMATION SCIENCE AND TECHNOLOGY

UNIVERSITI KEBANGSAAN MALAYSIA

BANGI

PERLINDUNGAN SERANGAN NAFI KHIDMAT (DOS) DAN SERANGAN

FLOODING BAGI XML PADA PERKHIDMATAN WEB BERASASKAN SOAP

MENGGUNAKAN ALATAN PERISIAN TENGA

2018

ABBAS AHMED ALI QASEEM AL-ASRI

DISERTASI YANG DIKEMUKAKAN UNTUK MEMENUHI SEBAHAGIAN

DARIPADA SYARAT MEMPEROLEH IJAZAH SARJANA SAINS KOMPUTER

FAKULTI TEKNOLOGI DAN SAINS MAKLUMAT

UNIVERSITI KEBANGSAAN MALAYSIA

BANGI

iii

DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and

summaries which have been duly acknowledged.

07 July 2018 ABBAS AHMED ALI

QASSEM AL-ASRI

P83728

iv

ACKNOWLEDGEMENT

First and foremost, praise be to Almighty Allah for all his blessings for giving me

patience and strength throughout the duration of this master research.

I would like to express my sincere gratitude to my supervisor Dr. Rossilawati

Sulaiman for her guidance and support throughout this work. She has been a great

source of inspiration to me. No word can express how grateful I am to her.

Moreover, I am grateful to my parents, my wife and to my brothers that have

always been extremely supportive to me. All I can say is that it would take another

thesis to express my deep feel affection for my family. Their prayers, patience,

sacrifice, love and encouragement have upheld my conviction towards pursuing this

course.

Last but not least, to all my dear friends who are directly and indirectly

contributing to the success of this work, thank you for everything Let me also say

thanks to all the members (lectures and staff) at the Faculty of Information Science

and Technology in the National University of Malaysia for their valuable support and

warm friendship.

v

ABSTRACT

A web service is defined as a method of communication between web applications

and clients. Web services are very flexible and scalable as they are independent of

both hardware and software infrastructure. The lack of security protection offered by

web services creates a gap that attackers can make use of. Web services are offered on

the HyperText Transfer Protocol (HTTP) with Simple Object Access Protocol

(SOAP) as an underlying infrastructure. Web services rely heavily on Extended

Markup Language (XML). Hence, web services are most vulnerable to attacks that

use XML as an attack parameter. Recently, a new kind of XML-based Denial-of-

Service (XDoS) attacks has surfaced, which target web services. The purpose of these

attacks is to consume the system resources by sending SOAP requests that contain

malicious XML content. Unfortunately, these malicious requests go undetected

underneath the network or transportation layers of the Transfer Control

Protocol/Internet Protocol (TCP/IP), as they appear to be legitimate packets. In

general, an XML parser is required for the web service engine to extract the required

parameters from an incoming message. An attacker can exploit this parser to

successfully perform DoS attacks. There are many different techniques that can be

used to perform DoS attacks using XML-based message formats. In this research, a

middleware tool is proposed to provide real time detection and prevention of XML-

based DoS (XDoS) and flooding attacks in web service. This middleware tool focuses

on attacks on the two layers in the Open System Interconnection (OSI) model, which

are to detect and prevent XDoS attacks on the application layer and prevent flooding

attacks at the Network layer. The rule-based approach is used to classify requests

either to normal or malicious to detect XDoS attacks. Experimental results from the

middleware tool have demonstrated that the rule-based technique has efficiently

detected and prevented XDoS and Flooding attacks such as oversized payload,

coercive parsing and XML external entities close to real-time such as 0.006 second

over the web services. The middleware tool provides close to 100% service

availability to normal request, hence protecting the web service against XDoS and

distributed XDoS (DXDoS) attacks.

vi

ABSTRAK

Perkhidmatan web adalah salah satu mekanisme komunikasi antara aplikasi web.

Perkhidmatan web tidak terikat dengan jenis infrastruktur perkakasan dan perisian,

kerana ia bersifat fleksibel dan berskala. Kekurangan ciri keselamatan yang

disediakan oleh perkhidmatan web mewujudkan peluang bagi penyerang.

Perkhidmatan web boleh berfungsi dengan menggunakan protocol-protokol dasar iaitu

Hypertext Transfer Protocol (HTTP) dan Simple Object Access Protocol (SOAP).

Perkhidmatan web sangat bergantung kepada Extended Markup Language (XML).

Oleh itu, perkhidmatan web adalah lemah terhadap serangan yang menggunakan

XML sebagai parameter serangan. Kebelakangan ini, sejenis serangan baru Denial-of-

Service (DoS) berasaskan XML telah dikenalpasti yang menyasarkan perkhidmatan

web. Serangan ini bertujuan untuk menyusutkan sumber komputer mangsa dengan

menghantar permintaan SOAP yang mengandungi kandungan XML yang berniat

jahat. Permintaan ini tidak dapat dikesan pada lapisan rangkaian atau pengangkutan

dalam lapisan Transfer Control Protocol/Internet Protocol (TCP/IP), kerana ia dilihat

sebagai paket yang sah. Secara umum, penghurai XML diperlukan untuk enjin

perkhidmatan web bagi menapis parameter yang diperlukan dari mesej yang diterima.

Penyerang boleh mengeksploitasi penghurai ini untuk melaksanakan serangan DoS.

Terdapat banyak teknik yang boleh digunakan untuk melakukan serangan DoS dengan

format mesej berasaskan XML. Dalam kajian ini, alat perisian tengah dicadangkan

untuk menyediakan pengesanan dan pencegahan secara masa nyata, ke atas serangan

DoS berasaskan XML (XDoS) dan serangan flooding dalam perkhidmatan web. Alat

ini memfokuskan kepada serangan ke atas dua lapisan dalam model Open System

 Interconnection (OSI), yang akan mengesan dan mencegah serangan DoS pada

lapisan Aplikasi, dan mencegah serangan flooding di lapisan Rangkaian. Pendekatan

berasaskan petua digunakan untuk mengelas pertanyaan kepada pertanyaan normal

atau pertanyaan berniat jahat bagi mengesan serangan XDoS. Hasil eksperimen dari

alat ini menunjukkan bahawa pendekatan berasaskan petua dapat mengesan dan

mencegah serangan XDoS berasaskan XML seperti muatan besar, penghurai pemaksa

dan entiti luar XML yang menghampiri masa nyata ke atas perkhidmatan web.

Dengan mengaplikasi alat ini, perkhidmatan web dapat menawarkan hampir 100%

layanannya kepada pertanyaan berjenis normal, dan pada masa yang sama terlindung

dari serangan XDoS dan serangan XDoS teragih (DXDoS).

vii

TABLE OF CONTENTS

 Page

DECLARATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xiii

CHAPTER I INTRODUCTION

1.1 Introduction 1

1.2 Problem statement 5

1.3 Research questions 6

1.4 Research objectives 6

1.5 Research scope 7

1.6 Motivation 7

1.7 Significance of the research 8

1.8 Thesis organization 8

1.9 Chapter summary 9

CHAPTER II LITERATURE REVIEW

2.1 Introduction 10

2.2 Existing standards and technologies 11

2.2.1 XML and XML schema 11
2.2.2 XML parsing 12
2.2.3 Service oriented architectures 15

2.2.4 Web services 17
2.2.5 Web services architecture 18

2.3 Web service attacks, threats and ws-security standards 20

2.3.1 Web service attacks 20
2.3.2 Ws-security standards 21

2.4 DoS/DDoS attacks in web services 22

viii

2.4.1 XML-based DoS attacks 23

2.5 DoS detection techniques 27

2.5.1 Detection techniques for network-based DoS

attacks 28
2.5.2 Detection techniques for application-based DoS

attacks 28
2.5.3 Detection techniques using machine learning

techniques 30

2.6 Related work 32

2.7 Gap of research 41

2.8 Chapter summary 41

CHAPTER III RESEARCH METHODOLOGY

3.1 Introduction 42

3.2 Research design 42

3.2.1 Literature review 43
3.2.2 Propose a new detection and prevention method for

XDoS and flooding attacks 44
3.2.3 Develop a middleware tool based on the design

phase 44
3.2.4 Evaluation 44

3.3 System architecture 44

3.4 Data flow in middleware side 47

3.4.1 Rule-based classification module 49
3.4.2 Firewall system 52

3.5 Evaluation 53

3.6 Chapter summary 53

CHAPTER IV EXPERIMENTAL RESULTS

4.1 Introduction 54

4.2 Experiment setting 54

4.2.1 Web service 56

4.2.2 Middleware tool 58
4.2.3 DDoS tools 61

4.2.4 SOAP request preparation 62

4.3 Evaluation 62

4.4 Results 64

4.5 Summary of comparison among the experiments 76

4.6 Chapter summary 78

ix

CHAPTER V CONCLUSION AND FUTURE WORK

5.1 Introduction 79

5.2 Research contribution 80

5.3 Objectives revisited 80

5.4 Future work 80

REFERENCES 82

Appendix A Rule-based classification 88

Appendix B Soap request using in evaluation 91

x

LIST OF TABLES

Table No. Page

Table 2.1 Threats Addressed by Current Web Service Standards

(Singhal et al. 2007) 22

Table 2.2 Summary of related work 39

Table 3.1 Sample of Classification Rules 51

Table 4.1 Experiment specification 55

Table 4.2 SOAP request set detail 56

Table 4.3 Result of ‘Normal’ requests in second 64

Table 4.4 Result of ‘Oversized Payload’ SOAP request in second 66

Table 4.5 Result of ‘Deeply Nested Payload’ SOAP request in second 67

Table 4.6 Result of ‘XML Attribute Count’ SOAP request in second 69

Table 4.7 Result of ‘XML element count attack’ SOAP request in

second 70

Table 4.8 Result of ‘XML entity expansion attack’ SOAP request in

second 72

Table 4.9 Result of ‘XML external entity attack’ SOAP request in in

second 73

Table 4.10 Result of ‘XML overlong names attack’ SOAP request in

second 74

Table 4.11 Response time for the eight type of SOAP requests 77

xi

LIST OF FIGURES

Figure No. Page

Figure 1.1 DDoS attack Architecture 4

Figure 2.1 An example of XML file 11

Figure 2.2 An example of XML Infinite Recursion 12

Figure 2.3 An example of XML external entity attack 12

Figure 2.4 DOM parser 13

Figure 2.5 SAX parser 14

Figure 2.6 Web service discovery and invocation 16

Figure 2.7 Web services architecture base on roles 18

Figure ‎2.8 Web services architecture base on roles 19

Figure 2.9 An example of deeply nested payload attack 25

Figure 2.10 An example of XML attribute count attack 25

Figure 2.11 An example of XML element Count attack 26

Figure 2.12 An example of an XML Bomb, an attack that uses the

reference mechanism in XML 26

Figure 2.13 An example of an XML External Entities an attack 27

Figure 2.14 DDoS attack concept (Baik et al. 2012) 33

Figure 3.1 Research design 43

Figure 3.2 System architecture 45

Figure 3.3 Invocation web service in regular mode 45

Figure 3.4 Invocation web service during an attack 46

Figure 3.5 System flowchart 48

Figure ‎4.1 Experimental topology diagram 55

Figure 4.2 Web service GUI 57

Figure 4.3 An example of SOAP request 57

xii

Figure 4.4 An example of the SOAP response 58

Figure 4.5 Initialization phase 59

Figure 4.6 Middleware console 60

Figure 4.7 DDoS tool 61

Figure 4.8 LOIC interface 62

Figure 4.9 Collecting the server response time in Normal mode 63

Figure 4.10 Scenario 1 63

Figure 4.11 Scenario 2 64

Figure 4.12 Result of ‘Normal’ request 65

Figure 4.13 Result of ‘Oversized Payload’ request 67

Figure 4.14 Result of ‘Deeply Nested Payload’ SOAP request 68

Figure 4.15 Result of ‘XML attribute count attack’ SOAP request 70

Figure 4.16 Result of ‘XML element count attack’ SOAP request 71

Figure 4.17 Result of ‘XML entity expansion attack’ SOAP request 73

Figure 4.18 Result of ‘XML external entity attack’ SOAP request 74

Figure 4.19 Result of ‘XML overlong names attack’ SOAP request 75

xiii

LIST OF ABBREVIATIONS

B2B Business to Business

BEEP Blocks Extensible Exchange Protocol

CPU Central Processing Unit

CSQD Cloud Service Queuing Defender

DDoS Distributed Denial of Service

DOM Document Object Model

DoS Denial of Service

DPM Deterministic Packet Marking

DTD Document Type Definition

DXDOS Distributed XML-Based Denial of Service

FAP Fuzzy Associative Pattern-Based

FAR Fuzzy Association Rule-Based

HTTP Hypertext Transfer Protocol

H-DoS HTTP Flooding Attack

HX-DoS HTTP and XML DoS

IDP intrusion Detection and Prevention

IDS Intrusion Detection System

IPS Intrusion Prevention Systems

OASIS Organization for the Advancement of Structured Information

Standards

QoS Quality of Service

REST Representational State Transfer

SAX Simple API for XML

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOTA Service-Oriented Traceback Architecture

SOTM Service-Ooriented Traceback Mark

xiv

SQL Structured Query Language

SSL Secure Socket Layer

UDDI Universal Description, Discovery and Integration

URL Uniform Resource Locator

W3C World Wide Web Consortium

WS Web Services

WSDL Web Service Description Language

WS-RX Web Services Reliable Exchange

XDoS XML-Based Denial of Service

XML Extensible Markup Language

XSS Cross Site Scripting

XXS XML External Entity

1

CHAPTER I

INTRODUCTION

1.1 INTRODUCTION

The dynamic use of the Internet services and applications has led to an increase on

conducting businesses online. It is considered that among the most innovative

inventions recently is the web technologies and Service-Oriented Architectures

(SOA). From early 1990s up till now, Web Services (WS) have evolved and come

along the way by offering rich functionalities, user friendly, ease of use and its

integration with other applications and services irrespective of the different platforms.

This trend has fascinated governments, banks and large organizations to offer their

services via web applications (Tiwari & Singh 2011). Web application services

include e-commerce portals, cloud computing, search engines (such as Google and

Microsoft Bing), social networking and many more (Jaffe 2014).

WS uses standard protocols (XML and SOAP) for the communication. Hence

WS is considered as a cross-platform that allow applications to connect to each other

independent of platform and/or language (Java can talk with C#, Windows

applications can talk with Unix applications) (Mouli & Jevitha 2016). WS usually is

made interoperable using the SOA, where it consists set of concepts and techniques

designing and developing software (Altmeier et al. 2015).

The web service can be accessed through an Internet connection in a self-

contained and self-describing application. Web services are represented by Web

Service Description Language (WSDL). However, metadata can be used as an

initiator for the Universal Description, Discovery and Integration (UDDI). Usually

web service applications are provided for a specific business function which can be re-

2

used within different settings. Simple Object Access Protocol (SOAP) is an

eXtensible Markup Language (XML) standard used to exchange messages between

Web services (Falkenberg et al. 2013).

Several vulnerabilities exist in messaging protocols such as SOAP and XML.

They are exposed to several type of attacks, for example, XML injections, Denial of

Service (DoS) attacks, Cross Site Scripting (XSS) attacks, Structured Query Language

(SQL) injections, SOAP oversized payloads and buffer oversized exploits (Chana et

al. 2015).

Based on the Open Web Application Security Project (OWASP 2017), XML,

SQL injection, and DoS attacks are the most frequently occurred in Web and WS

applications. They are classified as the top attacks since the year 2017. Moreover,

using web services over Hypertext Transfer Protocol (HTTP) makes it difficult to

block malicious web service traffic by firewalls, as firewalls cannot check the XML

content for any suspicious packets (Bebawy et al. 2005; Rajaram & Babu 2013).

Therefore, it is necessary to provide a security solution for SOAP message

communication in the application layer itself in order to provide an end-to-end

integrity, availability and confidentiality (Sindhu & Kanchana 2014).

According to Tianfield (2012), the availability of system resources is one of

the difficult issues, as the server are assumed to provide services to customers

continuously. Recently, several security standards are established to provide

protection for web services, but they only address integrity and confidentiality aspects

of web service security (Sindhu & Kanchana 2014). The lack of availability protection

made it easy for attackers to launch flooding attacks that overwhelm servers and

prevent them from delivering service to legitimate customers.

The DoS attack purpose is to impede availability of web services via making

computer resources (such as network bandwidth, CPU time, etc.) totally overloaded

and the services running on the server are unavailable to its intended users. An

attacker usually uses a huge number of computers to trigger the Distributed DoS

(DDoS) attacks. DDoS techniques are similar to DOS attacks, but they are launched

3

from multiple connected devices distributed across the Internet (Murugan &

Vivekanandan 2015).

The availability of web services is an important factor for business continuity.

Therefore, web services DDoS attacks introduce a challenging risk. DDoS attacks

consumes a lot of the computational resources, such as CPU or memory, makes the

system unavailable to legitimate users (Altmeier et al. 2015).

Usually, web service applications are open and available world-wide, which

means that web servers deal with all types of users including (normal users and

attackers) (Lin et al. 2008). Some have ill intention by taking advantage of insecurity

of web servers to initiate flooding attacks to compromise availability of web services.

As a result, legitimate users’ requests will be blocked (Suriadi et al. 2011). According

to Jensen et al. (2009) DoS attacks can be triggered with less efforts than those attacks

targeting non-web service systems including (web applications, web sites that do not

use web service). In web service application, DoS attack can be launched by a small

malformed XML message (Masdari & Jalali 2016). As recently published by

Akamai’s Third Quarter 2017 Report on State of the Internet, showed that there has

been a 69% increase in DDoS attacks over a year, with most attacks targeting web

service applications related to financial organizations, high tech organizations, public

sector agencies, media and entertainment organizations (Akamai’s 2017).

Furthermore, CDNetworks (2017) stated that, flooding attacks have increased

compared with the same quarter of 2016, where these attacks costed organizations

significant losses in revenues and even customers. When dealing with flooding attacks

on web servers the key endeavor is the web services architecture nature. Moreover,

web services are characterized by rapid distribution of application components, which

are deployed in different web servers and are offered by different service providers

globally. These characteristics make it very challenging to set standard strategies in

detecting and protecting against DoS attacks (Tiwari & Singh 2011).

So far, many proposals have been presented by security researchers

demonstrating various mechanisms in defending against flooding attacks. Most of

4

these mechanisms help in lowering attacks, but still considered difficult to tackle

flooding attacks because up till now there is no standard solution in addressing this

issue (Suriadi et al. 2011).

In general, a set of computers are controlled remotely by the attacker in a

DDoS attack. This control is done by using malicious software installed on each

computer. Each of these computers is called "zombie". Zombies are controlled by an

attacker to launch a DDoS attack against the victim's systems (Sandeep 2014). DDoS

attack process can be initiated into two stages; the first stage is to compromise

targeted systems which can be accessible through an Internet connection, and then the

attacker installs some hacking tools into these compromised systems, which turns

those systems into zombies. In the second stage, the attacker can control the

compromised system by sending an attack command to the zombies using some sort

of a secure channel to launch a bandwidth attack against the targeted victim. Figure

1.1 shows a generic scheme of a DDoS attack using a single attacker.

Figure ‎1.1 DDoS attack Architecture

The DDoS attack is one of the most famous and frequent web service attacks (Mouli

& Jevitha 2016). In this research, a solution is proposed to prevent XDoS and flooding

attacks on web services. Since DDoS was derived from DoS techniques, the word

DoS attacks is also referred to both DoS as well as DDoS attacks, in the context of the

thesis.

5

1.2 PROBLEM STATEMENT

Nowadays, web services are widely use due to their independent nature and code

reusability. In a DoS attack, the attacker tries to exploit the web service to make it

unreachable and cannot serve the legitimate users, then the system will be unavailable

and crash at certain point of time due to resource overloading (Loganathan & Ramesh

2015).

Most of web services today use XML for transferring data between web

service providers and consumers. However, many of the XML vulnerabilities have

been recently discovered and reported (Jensen et al. 2009; Gupta & Thilagam 2013;

Jan et al. 2016), as these vulnerabilities provided chances of DoS attacks. Therefore,

many systems that depend on XML protocol are at risk if vulnerabilities are not

properly mitigated (Jan et al. 2015).

An XML parser is required for the web service engine to extract the required

parameters from an incoming message. An attacker can exploit this parser to

successfully establish DoS attacks (Gupta & Thilagam 2013). The parser behavior can

be influenced by adding a Document Type Definition (DTD) on top of the XML

document. It is usually developed to specify the format or syntax of an XML

document, which also may produce several attacks, such as DoS (Späth et al. 2016).

There are many different techniques used to perform DoS attacks using XML-

based message formats. Given the complexity nature of an XML document and the

resource consumption nature of the XML parsing, a small distortion in a SOAP

message may cost a large amount of resources (Falkenberg et al. 2013).

XML is considered to be the fundamental technology of web services which

provides web services with many advantages but at the same time cause many

problems in the security point of view (Ibrahim & Shanavas 2014).

Because of the huge number of requests sent to the victim web servers, DoS

attacks can degrade or completely disrupt web services. Flooding attacks are one of

6

the biggest concerns for security professionals (Baria 2014). As a result, several

security approaches have been used to resolve this problem. However, DoS attacks are

still considered among the least preventable attacks (Singh et al. 2017). In this

research, a solution is proposed to overcome and specifically prevent the XML-based

DoS (XDoS) and flooding attacks efficiently. These two attacks are chosen in this

research because they are commonly implemented by attackers and they are very hard

to detect. Since the attacks take place on the application layer, so each attack appears

to be legitimate (Jan et al. 2015).

1.3 RESEARCH QUESTIONS

This research is conducted to answer questions related to the problem statement, such

as the following:

RQ1: What are the current techniques proposed to overcome the XDoS and

Flood attacks in SOAP-Based web services?

RQ2: What are the requirements and important parameter to overcome XDoS

and Flooding attacks?

RQ3: Is a middleware tool able to efficiently protect the web services against

XDoS and Flood attacks?

1.4 RESEARCH OBJECTIVES

This study aims to investigate web service attacks, especially XDoS and flooding

attacks. On the other hand, this research will explore existing techniques proposed by

other researchers in detecting and defending web service from DoS & DDoS attacks.

As a contribution of this study, the researcher will develop a middleware tool to

prevent XDoS and flood attacks on web services. Hence, we can formulate the

research objectives in three main tasks:

7

1. To investigate existing methods used to detect and defend against XDoS

and flood attacks on web service applications.

2. To design and develop a new mechanism (in a form of a tool) which will

be used to prevent XDoS and flood attacks in web service applications.

3. To evaluate the efficiency of the proposed method by comparing the server

response time for the selected SOAP requests.

1.5 RESEARCH SCOPE

There are different types of XDoS techniques that were suggested by previous

researchers, but the real challenge in detecting such attacks is to validate whether the

checked XML parser can be exploited by such techniques. It is indeed a complicated

task due to the nature of this type of attacks where it could vary from time to time. For

example, placing the payload of the DoS attack at one location inside the XML

document may confuse the parser and make the DoS attack successful (Altmeier et al.

2015).

The scope of this work is to improve web service security by preventing XDoS

and flooding attacks. Therefore, other web services vulnerabilities or web server

weaknesses are beyond the scope of this research. The tool that will be developed is to

demonstrate how XDoS, as well as flooding attacks can be detected and blocked.

1.6 MOTIVATION

One of the essential principles of the Service Oriented Architecture (SOA) technology

is to develop a system comprising of devices and machines connected through web

services. A service is the key component of SOA foundation. SOAP is a typical web

service technology to establish SOA (Kaur et al. 2017). Web services based on SOAP

are developed on top of the independent markup language XML platform. They are

usually deployed in business to business (B2B) integrations and are supported by the

industry large vendors such as IBM and Axway (Altmeier et al. 2015).

8

Web services availability in SOA implementations is of a vital requirement.

Hence, DoS attacks introduces a significant risk on web services, as they attempt to

consume a huge amount of computational resources such as Central Processing Unit

(CPU) or memory, with the aim to make web service unavailable. Moreover, several

approaches and techniques are used to perform DoS attacks, which lead to a

motivation to apply a new mechanism that prevents this type of attack.

1.7 SIGNIFICANCE OF THE RESEARCH

In existing research to prevent web service attacks, the researchers only addressed

SOAP messages security such as confidentiality, integrity and non-repudiation. There

are few security mechanisms provided for XDoS, where most of the current

techniques do not provide a complete solution to prevent such attacks. These

solutions are limited in preventing and containing this attack because they are mainly

focus on the application layer of the OSI model to detect and prevent these attacks.

These solutions can be considered as not enough, because the attacker could use the

flooding attack (flooding the server with thousands of requests per second), which

causes the service to be shut down due to server's resources consumption and most of

these approaches do not provide a deep XML analysis, which is to find more detail

features to classify packets. Hence, a middleware-based solution to overcome these

attacks is proposed and developed in this work.

1.8 THESIS ORGANIZATION

The thesis is being organised into five chapters which are elaborated as follow:

Chapter I depicts the outline of the study where an introduction the research is

described, the problem statement is formulated, the research objectives are developed,

and the scope of the research is identified.

Chapter II provides a comprehensive literature review on the field of XML-based

DoS attacks in web services. This can be represented by identifying the concept of

web service, SOA and XML. Then this chapter describes the structure of web service

9

and the standards that would are related with web service. In addition, this chapter

explores the existing techniques to detect the XDos attacks.

Chapter III illustrates in detail the research methodology, beginning from identifying

the problem to achieving the objectives of this study. Hence, this chapter highlights

the research methodology by illustrating the main components of the method. These

components consist of three aspects; client side, middleware side and server side.

Chapter IV highlights the experimental results obtained by the proposed method.

This can be represented by describing the experiment setting in which the parameters

of the experiment are being illustrated including tools, computers, and programming

language used. In addition, the evaluation method that would be carried out to assess

the proposed method is also described.

Chapter V highlights the conclusion of the study where a summary of the whole

thesis is illustrated. Moreover, an implication of the research contribution is also

elaborated. Finally, the future directions that could be motivated by this study are

discussed.

1.9 CHAPTER SUMMARY

This chapter concentrates on the core of the study in which the problem, research

questions, objectives, scope, motivation and significance of the research were

determined and illustrated. Next chapter will discuss the literature review behind the

study.

CHAPTER II

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter aims to review numerous collection of literature with respect to DoS

attacks addressing web service applications, especially XML syntax, SOAP message

and flooding attacks. The chapter is divided into five main sections; the first section

provides the relevant standards and technologies in the research subject. This include

the Extensible Markup Language (XML), XML schema, XML parsing techniques,

Service Oriented Architecture (SOA), along with concepts of web services (WS)

including web service components and web service architecture. The second section

addresses web services attacks and demonstrates in depth analysis of Web Service

Security standards (WS-Security) which usually used to provide integrity and

Confidentiality of SOAP messages. Moreover, a taxonomy of DoS attacks is analysed

and described, with detailed explanation on DDoS and its variants. Several

mechanisms of attack that attackers use to exploit the availability of resources are also

explained in the third section. The fourth section discusses the detection techniques

used to detect DoS attacks. The fifth section focuses on previous works used to detect

and defend DoS attacks, where it explores and reviews the techniques that are already

investigated by the cyber security community in the subject matter. This part will

focus on the techniques used in detecting DoS attacks as well as techniques to defend

against DoS attacks in web service applications.

11

2.2 EXISTING STANDARDS AND TECHNOLOGIES

This section describes a brief introduction to the relevant standards and technologies

used in this research.

2.2.1 XML and XML Schema

Extensible Markup Language (XML) is a structured format developed by the World

Wide Web Consortium (W3C), in which transmission, validation and interpretation of

data is being set (Bray 2008). Data interpretation can be implemented independently

in sort of software and hardware; thus, XML is considered to be more suitable for data

exchange between different applications and organizations. XML structure of a

document is defined by XML elements, where an XML element typically uses a start

tag <tag> and an end tag </tag>. Other child elements can be included such as

element attributes and text contents.

Figure 2.1 shows an example of XML file, which stores an order in a

bookshop.

Figure ‎2.1 An example of XML file

As described by W3C, XML Schema is a component describing the structure

of an XML document (Shudi (Sandy) Gao 2012). It is essentially a set of rules that

describe the structure for each element in the container. It covers its allowed attributes

(e.g., a customerID, ISBN and Price), the type of its value (e.g., a string or integer), a

description of its allowed child elements (e.g., an order).

12

2.2.2 XML Parsing

The first portion of a web service is the XML parsers which process input from other

web services or applications. The web service can be compromised due to a poorly

designed or poorly configured XML parser regardless of how secure the web service

is. So, it is vital to use robust and proven XML parsers (Singhal et al. 2007). An

improperly configured or developed XML Parser is susceptible to many different

attacks, such as the following:

1. Large or recursive XML documents can overload the XML parser and lead

to a DoS. In the recursive attack, the parser receives an XML document

which declares two entities calling each other in an infinite loop (Späth et

al. 2016).

Figure ‎2.2 An example of XML Infinite Recursion

In Figure 2.2, the parser resolves the entity a to a reference of b and the

entity b resolves to a reference of a. Therefore, the parser will loop

indefinitely and consume CPU resources.

2. XML documents can be configured to refer to and use local files. This may

help an attacker to gain knowledge about the local system or lead to DoS

attacks.

Figure ‎2.3 An example of XML external entity attack

13

In Figure 2.3 the parser will replace the external entity ‘&File;’ with the

content of the remote file ‘\\192.168.0.2\payload.txt’, which is a large size

file.

3. External references to other XML documents or XML schemas can be

used to bypass XML validators such as file size limit. As shown in Figure

2.3, the attacker can use that weakness to load XML file to bypass XML

validator.

There are two standard types of XML parsers which can be used across

different platforms, which are DOM-based and SAX parser, explained like the

following:

a. DOM-based parsers

In this approach, a tree structure of the whole XML document is created and can be

called as document object model (DOM). A programmer can access the XML

document and easily traverse through the XML tree, access, insert, and delete nodes.

A node may be an element, an attribute, a text content, or a comment. The main

disadvantage of this parsing approach is the high resource utilization. Because the

whole document must be read and load into memory before the programmer can

access its contents (Falkenberg et al. 2013).

Figure ‎2.4 DOM parser

14

As shown in Figure 2.4, a DOM parser loads the complete XML file into

memory and creates a tree structure where each node in the tree represents a

component of XML file.

b. SAX parsers

Simple API for XML (SAX) parsers are event-based. XML tree can be used for SAX

parser to operate once at a time on parts of the XML tree, so that whenever the parser

encounters an XML node, an event is triggered. In order to process the XML

document, the program’s task is responsible to handle these events. Low utilization of

resources is one of the main advantages of event-based parsing. Furthermore, event

handlers can immediately start processing the data once an event is triggered without

having to wait for the parser till the end of the XML document. However, some

operations will be more complex compared to a DOM parser, for example, multiple

parsers are required to sort an XML document, as the SAX parser only reads forward

sequentially (Falkenberg et al. 2013).

Figure ‎2.5 SAX parser

As shown in Figure 2.5, the SAX Parser parses the XML file line by line and

triggers events when it encounters opening tags, closing tags or character data in an

XML file.

15

2.2.3 Service Oriented Architectures

Service Oriented Architectures (SOA) is a famous architectural model that provides

roughly composition of services. In the last decade, Service Oriented Architectures

and Web Services were considered to be the most innovative technological

advancement. When building web service applications SOA is currently considered as

a blueprint (Simmonds et al. 2010). The architecture’s main objective is to gain

minimum dependency between software agents. It also supports reusability,

composability and interoperability between different applications (Masood 2013). The

main goals for the transition from the traditional approach (such as object-based

approach) to service-oriented approach are mainly facilitated by SOAs consideration

of real world factors such as trust boundaries, physical distribution and performance

requirements. Moreover, SOAs boundaries are explicit, where services are

autonomous with minimal dependency on interacting software modules. In addition,

SOA uses standard internet technologies such as HTTP and XML to build distributed

systems.

Distributed systems are usually defined as systems that consist of more than

one independent computer, but they appear as one system to the user (Tanenbaum &

Van Steen 2007). The design principle behind SOA is the use of loose coupling which

isolate each service as an independent entity so as to provide a layer of abstraction

between service providers and consumers. This promotes flexibility during

implementation of different services without impacting consumers (Serrano et al.

2014).

Moreover, one of the primary goals of SOA is to automate business processes

by allowing services to automatically discover one another, and immediately take

advantage of the functionality offered (Singhal et al. 2007). The communication

process starts with the service provider publishing a service description in WSDL

document. The description includes information on what technologies a service

provider supports. When a consumer needs a particular service, he has to retrieve the

relevant WSDL document from web service provider and then start to invoke

operations of the intended service (Suriadi et al. 2011). There are other ways to

16

retrieve WSDL file which include the use of UDDI platform, as the consumer can

search the registry for the intended WSDL file to start requesting Web services

(Shahgholi et al. 2011). Figure 2.6 illustrates web service discovery and invocation in

SOAs.

Figure ‎2.6 Web service discovery and invocation

As shown in figure 2.6, a web service cannot be discovered if it has not been

published, because the web service discovery depends on service publication. Many

mechanisms allow the service requestor to gain access to the service description

(WSDL) and make it available to the application at runtime by invoking the WSDL

file. A simple way is to use static discovery where the service requestor retrieves a

WSDL document from a local file. This is usually the WSDL document obtained

through a direct publish. Alternatively, the service may be discovered at design time

or run time using a local WSDL registry, or a public or private registry such as UDDI

(Kreger 2001).

17

2.2.4 Web Services

A web service can be described as an interface with a collection of operations that are

network-accessible through standardized XML messaging. It can be described using a

standard, formal XML notion as its service description. It can cover all necessary

details to interact with the service, including message formats (that describes the

operations), transport protocols and location (Kreger 2001).

Moreover, a web service is a technique to interact between processes over

computer networks between different software applications that might work as an

individual or combined entity with different services to compose a group of services

(Altmeier et al. 2015). A web service is a platform which is language independent,

and it could run on any platform and can be written in any programming language

(Sindhu & Kanchana 2014). It can be implemented using different technologies, for

example, Representational State Transfer (REST) or SOAP (Kaur et al. 2017; Rathod

2017).

SOAP is a W3C specification that defines the structure of XML messages and

also a protocol to achieve machine-to-machine communication, and generally SOAP

messages consist of a header and a body. The <Header> element includes message-

specific data (e.g. timestamp, user information, or security tokens). The <Body>

element contains function invocation data.

Web services achieve interoperability by using a set of XML-based open

standards, such as WSDL, SOAP and UDDI. These standards provide a common

blueprint of defining, identifying, locating, publishing and consuming web services. In

addition, web services use SOAP to transfer the data, and WSDL is used for

describing the services, whereas UDDI is used to access the services using service

metadata (Ibrahim & Shanavas 2014).

18

2.2.5 Web Services Architecture

To view the web service architecture, there are two ways (Kreger 2001). The first one

is to examine the individual roles of each web service actor, and the second one is to

examine the emerging web service protocol stack.

1. Roles in a Web Services Architecture

Figure 2.7 shows a web services architecture base on roles. There are three major

roles within the web service architecture.

Figure ‎2.7 Web services architecture base on roles

a. Service Provider

It is the entity who provides the web service and implements the service and

makes it available on the Internet.

b. Service Requestor

It can be represented by any consumer of the web service. The service

requestor utilizes an existing web service by opening a network session, then

sending an XML request.

